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I intend to give a series of lectures, during the upcoming break, on overdetermined problems. I hope
these lectures will lead to writing an expository paper on this topic. I am not an expert in this area
but an enthusiast. I believe I have published at least two papers in this area. I don’t remember when I
wrote the first one but the second one will appear in 2021. Although it is a fascinating area of research,
it is very challenging to find a good problem to work on and even more challenging to find techniques
to plow through obstacles on your way.

Let me now introduce you to the most well-known and basic overdetermined problem in partial
differential equations. The boundary value problem

(TP )

{
−∆u = 1 in Ω
u = 0 on ∂Ω

is known as the torsion problem or the Saint-Venant problem. Here Ω, the domain of interest, is a
bounded region in Rn, and has smooth boundary ∂Ω. The unknown u is a function of the spatial
variables x1, · · · , xn i.e. u = u(x1, · · · , xn). The notation ∆u denotes the Laplacian of u:

∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

.

In (TP ) one seeks a function u with Laplacian equal to −1 throughout Ω, and vanishing on ∂Ω. In
particular domains u can be explicitly found. One such domain is an n-dimensional ball, say, centered
at x0 ∈ Rn with radius R, denoted B(x0, R). One easily verifies that the problem{

−∆u = 1 in B(x0, R)
u = 0 on ∂B(x0, R)

has the solution, u(x) = R2−|x−x0|2
2n . Here x = (x1, · · · , xn) and |x − x0|2 =

∑n
k=1(xk − x0

k)2. One
interesting fact about this solution is that its normal derivative on ∂B(x0, R) is constant. Indeed, if
we denote the unit normal vector on ∂B(x0, R) pointing out of B(x0, R) by ν, then

∂u

∂ν
|∂B(x0,R) = −R

n
.

A question is then raised: Is the converse of this result true? Let us state this as a
Conjecture: Suppose the system

(OD)


−∆u = 1 in Ω
u = 0 on ∂Ω
∂u
∂ν = constant =: c on ∂Ω
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has a solution u. Then D must be an n-ball.

In the literature a problem like (OD) is called overdetermined, why? The reason is obvious.
The problem (TP ) is already well-posed; meaning, it has a unique solution. Hence the condition:

∂u

∂ν
= c on ∂Ω

is simply extra; that is the reason for using the word “overdetermined”. I used to call it the “annoy-
ing” condition but not anymore. I am convinced that overdetermined problems are mathematically
fascinating, and they are indeed the main drive behind the birth of many powerful mathematical
techniques.

In 1971, exactly half a century ago, James Serrin settled the conjecture affirmatively, see [1].
Interestingly, the very next paper in the same journal was authored by Hans Weinberger, in which he
also gave an affirmative answer to the conjecture, but his approach was completely different than that
of Serrin’s, see [2]. I had the privilege to meet James in 1997 in the UK, and (only) see Hans (several
times) during the Bieberbach conjecture conference held at Purdue in 1985. Serrin’s approach used
the method of the moving plane while Weinberger’s, more or less, used advanced calculus. The latter
was a lot more appealing to me. Over years I have been returning to Weinberger’s paper on different
occasions and for different purposes either because I had to or I just wanted it for entertainment. On
one of these visits I noticed an important identity in his proof:∫

Ω

u dx = γ(c, n, V ),

with an explicit formulation of γ. Here, V stands for the volume of Ω, c is the constant appearing in
the second boundary condition, and n is the dimension. This identity was the main key in his proof.
What puzzled me was that he worked unnecessarily too hard to obtain the identity when he could
readily get it by applying the Pohozaev’s identity:

Theorem 0.1. [3] Suppose u satisfies{
−∆u = f(u) in Ω
u = 0 on ∂Ω.

Then the following identity holds:

2− n
2

∫
Ω

|∇u|2 dx+ n

∫
Ω

F (u) dx =
1

2

∫
∂Ω

(x · ν) |∇u|2 dσ,

where F (t) =
∫ t

0
f(s) ds.

The first version of the paper was in Russian, but it was translated into English in the same
year (1965, six years before Weinberger’s proof!!). The total number of citations of Pohozaev’s re-
markable paper to date is 371. Only 9 of these citations belong to 1965-2000. That means this paper
went nearly unnoticed for 35 years. (why?). Were the Russian and US mathematical communities so
much disconnected then? Whatever the reason was it is past; the international mathematical com-
munity now agrees on the profound importance of Pohozaev’s identity, and many mathematicians are
either generalizing it or using it to prove existence or non-existence of solutions to partial differential
equations.

Let me write a little bit about the lectures. I will use four differential operators throughout.
They are
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• The Laplace operator ∆;
• The p-Laplace operator ∆p. The action of ∆p on a function u(x1, · · · , xn) is defined as follows:

∆pu(x) = ∇ · (|∇u(x)|p−2∇u(x)),

where p ∈ [1,∞). The symbol ∇ denotes the gradient operator i.e. ∇u(x) = 〈∂u/∂x1, · · · , ∂u/∂xn〉.
Actually, when p =∞, we have the infinity-Laplace operator but I will not use this operator because
the solutions of differential equations involving ∆∞ are of viscosity type and this topic is irrelevant to
the main theme of the lectures;
• The bi-Laplace operator ∆2 := ∆(∆);
• The k-Hessian operators Sk. These operators are probably not familiar to many people. So let me
write a bit about them. Let A be a symmetric real square matrix of size n ∈ N. It is well known, and
of course easy to prove, that the eigenvalues of A are real. Given the size of A is n, there must be n
eigenvalues, counting multiplicities. Let us denote them by λ1, · · · , λn. For k ∈ {1, · · · , n}, the k-th
elementary symmetric function of the eigenvalues of A is defined as follows:

Sk(A) =
∑

i1<i2<···<ik

λi1 · · ·λik .

So, for example, when n = 4 and k = 2, we have

S2(A) = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4.

Said another way, Sk(A) is the sum of all k-dimensional principle minors of A. How do we construct a
differential operator out of Sk? We begin with u = u(x1, · · · , xn), say a smooth function. The Hessian
matrix of u is the square matrix:

H(u)(x) =

 ∂2u/∂x2
1 ∂2u/∂x1∂x2 · · · ∂2u/∂x1∂xn

...
...

. . .
...

∂2u/∂xn∂x1 ∂2u/∂xn∂x2 · · · ∂2u/∂x2
n


I shall abuse the notation and write ∇2u instead of H(u). Since ∇2u is a symmetric matrix it makes
sense to talk about Sk(∇2u), the so called k-Hessian differential operator. Needless to say, the eigen-
values of ∇2u depend on the spatial variable x. Usually we hear of linear or nonlinear differential
operators but, for your information, Sk(∇2u) is classified as a fully nonlinear differential operator,
whatever that means. To get a feel of Sk(∇2u), let us look at two very special cases:
i) k = 1. In this case, S1(A) = λ1 + · · · + λn. That is to say, Sk(A) = trace(A). Whence,
S1(∇2u) = trace(∇2u) = ∆u. In other words, S1 coincides with the Laplace operator;

ii) k = n. In this case, Sn(A) = λ1 · · ·λn. Hence, Sn(A) = det(A). So, Sn(∇2u) = det(∇2u),
which is known as the Monge-Ampère operator. Amongst other things I will derive the following
Pohozaev’s identity:

Theorem 0.2. Let f ∈ C1(Ω) be a non-negative function and F (u) =
∫ 0

u
f(s) ds. If u ∈ C2(Ω)∩C(Ω)

satisfies: {
Sk(∇2u) = f(u) in Ω
u = 0 on ∂Ω,

where Ω is a bounded C2 domain in Rn, then

n− 2k

k(k + 1)

∫
Ω

Sijk (∇2u)uiuj dx+
1

k + 1

∫
∂Ω

〈x, ν〉 ∇u|k+1 dσ = n

∫
Ω

F (u) dx,

where, in general, Sijk (A) = ∂Sk(A)
∂aij

.
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