Research project and supervisory team

Supervisory	Supervisor Name
Team	Prof Saurav Goel
	Prof Jim Greer
Short introduction &	Title: Thermal, mechanical, and electronic behaviour of 2D materials during
description of	nanoindentation and nanoscratching in a chemical/electrical environment
research project	
	Two-dimensional (2D) materials, such as graphene, transition metal
	dichalcogenides (TMDs) and hexagonal boron nitride (h-BN), exhibit
	extraordinary thermal, mechanical and electronic properties, making them ideal
	candidates for next-generation nanodevices, flexible electronics and protective
	coatings. However, their performance in practical applications is critically
	influenced by their behaviour under mechanical, electrical and chemical stress
	at the nanoscale. This PhD project investigates the thermal, mechanical, and
	electronic responses of 2D materials during nanoindentation and
	nanoscratching in a chemical/electrical environment.
	By combined use of atomic force microscopy (AFM) and molecular dynamics
	(MD) simulation, the project will investigate fracture, plasticity, friction, and
	wear regimes of 2D materials in complex environments e.g., the energy inputs
	into the mechanical deformation process will be used to infer heat dissipation
	and heat losses to understand thermal properties. This integrated approach will
	allow for a detailed exploration of the interplay between mechanical stress,
	thermal transport and electronic properties in 2D materials. Key objectives
	include: (1) elucidating the deformation and failure mechanisms of 2D materials
	under nanoscale mechanical stress, (2) quantifying heat generation and thermal
	transport during mechanical loading, and (3) assessing the impact of
	mechanical deformation on electronic properties, such as carrier mobility and
	conductivity.
	33.134.35.1.1.7.
Contact points	Prof Saurav Goel (saurav.goel@nottingham.edu.cn)