Supervisory	<u>Xu Sun</u>
Team	
Short introduction &	The rapid advancement of autonomous driving technology has the potential to
description of	revolutionize transportation by improving safety, efficiency, and convenience.
research project	However, as autonomous vehicles (AVs) transition from full human control to varying levels of automation, the interaction between human drivers/passengers and AVs becomes a critical research area. One of the key challenges in this domain is the ability to detect and respond to human fatigue and emotional states, which can significantly impact driving safety, trust in AV systems, and overall user experience.
	This PhD project aims to explore novel HCI mechanisms to accurately detect and interpret human fatigue and emotions in the context of autonomous vehicles. The research will focus on multi-modal data collection, including physiological signals (e.g., heart rate variability, electroencephalography), behavioral cues (e.g., eye- tracking, facial expressions), and contextual factors (e.g., driving conditions, environmental stimuli). By integrating these data sources with machine learning models, the study will develop real-time adaptive systems capable of enhancing driver-passenger interaction and vehicle response mechanisms.
Contact points	Xu Sun: <u>xu.sun@nottingham.edu.cn</u>

Supervisory	Prof Jian Yang
Team	Prof. Christos Spitas
Short introduction &	The project will focus on advancing the understanding and control of nonlinear vibrations systems through data driven approaches. Nonlinear vibrations, common
research project	in engineering systems like aerospace structures, mechanical systems, and civil infrastructure, often lead to complex energy transfer mechanisms that are challenging to analyse using traditional linear methods. The study aims to develop innovative data-driven techniques to better characterize and suppress these vibrations by analysing energy transfer dynamics.
	The project will leverage machine learning and advanced signal processing tools to extract patterns and relationships from experimental or simulated data. These methods enable the identification of key energy transfer pathways and nonlinear interactions that govern system behaviour. By analysing these pathways, the study seeks to design more effective vibration suppression strategies, such as nonlinear vibration isolators and absorbers, to mitigate unwanted vibrations and enhance system performance.
	A key contribution of the research is the integration of data-driven models with physical insights, allowing for a more accurate representation of nonlinear phenomena. The paper also explores the use of dimensionality reduction techniques to simplify complex datasets, making it easier to identify dominant energy transfer modes. Additionally, the study highlights the potential of real- time data processing for adaptive control systems, which can dynamically adjust to changing vibration conditions.
	The findings demonstrate the effectiveness of data-driven methods in improving the analysis and suppression of nonlinear vibrations, offering significant benefits

	for engineering applications. By combining computational tools with experimental
	complex vibration systems, ultimately leading to safer, more efficient, and reliable
	designs.
Contact points	jian.yang@nottingham.edu.cn

Supervisory	Prof. Yong Ren
Team	Prof. Xiaogang Yang
	Prof. Yuying Yan
Short introduction &	PhD project title: High Throughput synthesis of microcapsules with tunable gas
description of	selectivity for catalytic application using microfluidic reactors
research project	
	Microcapsules are widely used in various industries, including pharmaceuticals,
	food, and catalysis, due to their ability to encapsulate and release substances in a
	controlled manner. In catalytic applications, the ability to selectively allow certain
	gases to permeate while blocking others is crucial for optimizing reaction efficiency
	and product yield. Traditional methods of microcapsule synthesis often lack the
	precision and scalability required for industrial applications. Microfluidic reactors
	offer a promising alternative, providing fine control over the synthesis process and
	enabling high-throughput production. The primary objective of this project is to
	develop a high-throughput method for synthesizing microcapsules with tunable gas
	selectivity, specifically designed for catalytic applications. The use of microfluidic
	reactors is central to achieving precise control over the microcapsule properties,
	enabling tailored gas permeability and selectivity. The project will focus on (1)
	development of a microfluidic reactor capable of producing microcapsules with
	uniform size and morphology; (2) selection of polymer materials for the
	microcapsule shell that can be tuned for gas selectivity, and incorporation of
	catalytic nanoparticles within the microcapsule core; (3) size distribution and
	morphology analysis using microscopy and dynamic light scattering (DLS), gas
	permeability and selectivity testing using gas chromatography and mass
	spectrometry; and catalytic activity assessment through controlled reaction
	studies; (4) optimization of the microfluidic reactor design and synthesis
	parameters to enhance inroughput and microcapsule performance, and
	application of computational modeling to predict and optimize gas selectivity and
Contact naints	Vang Dani yang ran Quattingham adu an
contact points	rong ken: <u>yong.ren@nottingnam.edu.cn</u>

Supervisory	Xiaoling Liu,
Team	Christos Spitas,
	Amin Farrokh Abadi
Short introduction &	Gradient Hierarchical Bionic Porous MXene/Biobased Composites for
description of	Broadband Acoustic Absorption, Vibration Attenuation, and Thermal Insulation
research project	Noise pollution, vibration damage, and thermal management are critical challenges
	in various fields, including aerospace, intelligent buildings, electronic devices, and transportation. Conventional materials used for acoustic absorption, vibration
	attenuation, and thermal insulation, such as polymer foams, rubber composites, and ceramic fibers, often suffer from limited functionality, poor environmental
	compatibility, and insufficient mechanical stability. As modern engineering
	demands lightweight, multifunctional materials with enhanced performance, there
	is a great need to develop novel composites that simultaneously achieve
	broadband sound absorption, efficient vibration damping, and superior thermal
	insulation
	This research aims to develop gradient hierarchical norous MXene/highased
	composites to simultaneously optimize broadband sound absorption, vibration
	attenuation, and thermal insulation. The proposed strategy involves the fabrication
	of an interconnected porous structure using a combination of bio-template-
	assisted methods and ice templating to enhance wave scattering and phonon
	dissipation. By employing electrostatic self-assembly or in-situ polymerization,
	MXene will be uniformly distributed within the biobased matrix, improving
	interfacial bonding and mechanical stability. The performance of the composites
	mechanical analysis (DMA), and thermal conductivity measurements to evaluate
	their acoustic absorption, damping efficiency, and heat insulation properties. Finite
	element modeling (FEM) combined with Fourier-transform infrared spectroscopy
	(FTIR) will be employed to elucidate the interfacial interactions between MXene
	and the hierarchical pore network, providing insights into energy dissipation
	mechanisms. To validate the real-world applicability, the optimized composites will
	be tested in intelligent building acoustics, automotive holse reduction, and
	durability and multifunctionality
	This study represents a significant advancement in multifunctional materials by
	integrating broadband acoustic absorption, vibration attenuation, and thermal
	insulation into a single composite system. The findings will facilitate the
	development of lightweight, high-performance materials with broad applications
	in aerospace, smart manufacturing, and sustainable infrastructure
Contact points	<u>Xiaoling.liu@nottingham.edu.cn</u>

Supervisory Team	<u>Dr. Hao Chen</u> <u>Dr. Adam Rushworth</u> Prof. Zhirong Liao
Short introduction &	
description of research project	Inis project investigates the effects of NIAI powder addition and powder structural design for enhancing the microstructure and oxidation resistance of CoNiCrAlY coatings. NiAl powders are blended with CoNiCrAlY powders, in an attempt to modify the oxidation behavior. A core-shell structure is proposed, where NiAl particles are encapsulated by CoNiCrAlY shells, aiming to regulate aluminum diffusion pathways. In addition, a multi-layer CoNiCrAlY system is also proposed to enhance the oxidation lifetime of CoNiCrAlY coatings. This project will seek using novel laser powder bed fusion process for coating fabrication and structure control.
Contact points	Dr. Hao Chen: <u>Hao.Chen@nottingham.edu.cn</u>

Supervisory	Professor Xiaogang Yang,
Team	Dr Guang Li,
	Dr Shanshan Long
Short introduction &	
description of	Project Title: Mechanism of turbulence induced shear, micro scale shear and
research project	crystallization synergic modulation on controllable synthesis of functional
	micro/nano particles
	This proposed project aims to in-depth reveal mechanism of turbulence induced
	shear, micro scale shear and crystallization synergic modulation on controllable
	synthesis of functional micro/nano particles. In the meantime, the project will
	attempt to realise the controllable synthesis of porous micro/nano drug delivery
	carrier material with innovative technique of advanced intelligent synthesis of
	medical functional micro/nano porous carrier materials and development of the
	synthesis system prototype. By considering the application of turbulence induced
	shear intensification to the synthesis process, Computational Fluid Dynamics (CFD)
	numerical simulation, in particular LES modelling, and experimental investigation
	approaches will be used to develop novel reactors that can be used for realization
	of such synthesis process. The proposed project will particularly focus on the
	aspects of hydrodynamics and crystallization kinetics involved in the synthesis
	process of pharmaceutical micro/nano particles. Also, the mechanism of strong
	coupling between hydrodynamics and chemical reaction in synthesis of functional
	micro/nano particles will be revealed. It is expected that the technology suitable
	for the complete process of synthesising pharmaceutical-functional micro/nano
	particles via shear turbulence intensified reactive manufacturing will be obtained.
	The specific research objectives as realization of the project aims include:
	1. Inrough establishment of the whole process of preparing medical porous
	carrier granular product using intelligent reaction manufacturing technology,
	snear turbulence intensification, turbulence snear controllable synthesis,
	realized
	I tedilstu.
	2. The effects of turbulence snear controllable synthesis hydrodynamics,
	coupled with the mass transfer on the synthesis process of functional

	 pharmaceutical micro/nano particles for drug controllable delivery system will be fundamentally studied. 3. By fundamentally investigating the hydrodynamic characteristics on high-speed counter-swirling impinging jet and multistage Rankine vortex flow reactors and characterising the synthetic pharmaceutical micro/ nano particle carrier materials, a correlation between the hydrodynamic parameters of the reactor and the physicochemical properties of the synthetic pharmaceutical
	micro/ nano carrier particles will be established.
Contact points	Professor Xiaogang Yang: <u>Xiaogang.yang@nottingham.edu.cn</u> Dr Guang Li: guang li@nottingham.edu.cn