Supervisory	Lead supervisor: BOON GIIN LEE
Team	Co-supervisor: <u>Matthew Pike</u>
	Co-supervisor: Horia Maior (University of Nottingham)
Short introduction &	
description of	Current methods for rehabilitation monitoring often rely on what can be
research project	rather invasive and costly technologies, coupled with somewhat subjective
	clinical evaluations, a combination which can significantly affect patient
	compliance and their overall recovery. To address the limitations of current
	rehabilitation practices, this research project aims to investigate the potential
	of millimetre-wave (mmWave) frequency modulated continuous wave
	(FMCW) radar for continuous, non-contact patient monitoring. Through
	placing a strong emphasis on the use of eXplainable Artificial Intelligence (XAI)
	to improve the interpretation and subsequent clinical application of the
	FMCW radar data, this research seeks to evaluate the feasibility and
	effectiveness of an XAI-based mmwave FIVICW radar system for unobtrusive,
	real-time patient monitoring within a renabilitation context. The project aims
	to develop a comprehensive signal processing framework that integrates XAI
	methods, important for extracting clinically significant information from the
	rader based menitoring and real world healthcare applications. This
	development is leaped towards ensuring the technology is both feasible and
	scalable within hospital environments. Illtimately, this research is focussed on
	improving both the interpretability and accuracy of rebabilitation
	assessments and to provide clinicians with actionable insights and a deeper
	understanding of patient progress, enabling more personalised rehabilitation
	strategies. The anticipated outcome of this research is a more efficient.
	accessible, and scalable rehabilitation monitoring solution, one which is
	suitable for a variety of healthcare settings, and particularly beneficial in
	settings with limited resources, addressing a global need for improved
	healthcare services.
Contact points	BOON GIIN LEE: <u>boon-giin.lee@nottingham.edu.cn</u>

Supervisory	Assoc. Prof. Dr. Kian Ming Lim
Team	Prof. Ruibin Bai
	Asst. Prof. Dr. Daokun Zhang
Short introduction &	Transductive Self-supervised Large Model with Embedding Propagation for Few-
description of	shot Medical Image Analysis
research project	
	Deep learning has achieved state-of-the-art performance in various domains, including medical image analysis. However, its reliance on large amounts of labeled data is a significant limitation in medical applications, where labeled data is scarce and expensive to obtain. Few-shot learning (FSL) has emerged as a promising solution, enabling models to generalize well to unseen tasks with minimal data. Despite its potential, FSL faces challenges such as limited generalization, sensitivity to domain variations, data distribution shifts, and difficulties in establishing strong decision boundaries with scarce data.
	This project proposes a novel FSL framework for medical image analysis, leveraging a transductive self-supervised large model with embedding propagation. Self- supervised learning will be used to learn intermediate representations from unlabeled data, capturing meaningful semantic and structural features to improve generalization across medical tasks. Large pre-trained models will provide robust feature embeddings, even with limited labeled samples, while embedding propagation will smooth the feature manifold, reducing the impact of data distribution shifts.
	Additionally, transductive information maximization will optimize decision boundaries by leveraging mutual information between query samples and their predicted labels. This approach enhances the model's ability to make accurate predictions with scarce data, which is critical for medical applications requiring high diagnostic accuracy.
	The proposed framework will be evaluated on benchmark medical image datasets and compared with state-of-the-art FSL methods. Expected outcomes include improved diagnostic accuracy, enhanced clinical decision-making, high-impact publications, and scalable solutions for real-world healthcare challenges, particularly in data-scarce scenarios.
Contact points	Assoc. Prof. Dr. Kian Ming Lim: <u>Kian-Ming.Lim@nottingham.edu.cn</u>

Supervisory	Dr Qian Zhang
Team	
Team Short introduction & description of research project	Title: Context-Based Learning with Large Language Models for Video Understanding in Activity Recognition and Quality Assessment This research aims to develop a novel context-based learning framework that enhances video understanding for activity recognition and quality assessment by integrating Large Language Models (LLMs), Vision-Language Models (VLMs), and motion capture data. Traditional models for video-based action recognition rely heavily on large-scale annotated datasets and struggle with capturing contextual and temporal dependencies. As a result, they perform poorly in evaluating action correctness, sequence adherence, and execution quality—critical in fields such as rehabilitation, sports analytics, and industrial training. The proposed project explores three key directions: (1) using context-aware knowledge distillation to train action recognition models with auxiliary textual data, reducing dependency on paired video-text datasets; (2) integrating visual, textual, and skeletal inputs through LLMs to enhance spatiotemporal reasoning in activity quality assessment; and (3) employing motion capture data to benchmark
	model performance and support fine-grained evaluation of movement quality. By incorporating domain knowledge, sequential understanding, and multimodal fusion, this research addresses core limitations in current models, enabling improved generalization, explainability, and feedback generation. The outcome will be a scalable and robust AI system capable of understanding complex human activities in real-world contexts with reduced annotation cost and enhanced interpretability.
Contact points	Qian Zhang: <u>gian.zhang@nottingham.edu.cn</u>

Supervisory	Ruibin Bai
Team	Xinan Chen
	Rong Qu
Short introduction &	The increasing demands on modern manufacturing systems necessitate
description of	significant advancements in operational efficiency. While current approaches to
research project	production scheduling (decision making) often struggle with either a lack of transparency or limitations in adaptability and performance, this research aims to explore a novel paradigm for dynamic scheduling in intelligent manufacturing, leveraging cutting-edge Artificial Intelligence (AI) technologies. This PhD project will investigate the application of approaches such as reinforcement learning, large language models, and evolutionary algorithms to create innovative scheduling methods that can optimize complex production processes while ensuring that decision-making remains understandable and adaptable to real- world changes. We seek to develop AI-powered scheduling systems that offer enhanced performance, maintain clarity in their operation, and can be readily integrated into existing intelligent manufacturing environments. This research offers the opportunity to contribute to the forefront of intelligent manufacturing by developing next-generation scheduling solutions that balance efficiency with transparency and adaptability, utilizing the power of advanced AI techniques.
Contact points	Xinan Chen: <u>xinan.chen@nottingham.edu.cn</u>