Research project and supervisory team

Supervisory	Dr. Ibrahim Khan (PhD, Postdoc) (UNNC)
Team	
Short introduction &	Carbon Neutrality and energy generation are the key research paradigms in
description of	modern research. One of the strategies is to replace the existing fossil fuel
research project	technologies with green alternatives. Photoelectrochemical water splitting (PEC-
	WS) technology offers a great choice to produce green or yellow hydrogen (H2)
	energy from water, which is considered a zero-emission energy with great fuel
	value and hence contributes to carbon neutrality. Many state-of-the-art materials
	such as TiO2, WO3, ZnO, BiVO4, Fe2O3, CuO/Cu2O, etc. have been exploited for a
	long time without any industrial success. Recently, single-crystal Si-based
	architectures have demonstrated outstanding performance in PEC applications.
	However, their high cost and poor yield due to metastable nature and crystal
	faults pose challenges. Moreover, their experimental quantum efficiencies fall
	short of expectations. Group III-V semiconductors have been considered viable
	substitutes for Si due to their high light absorption and excellent charge transport
	properties in photocatalytic applications. Challenges such as low photostability
	and wettability modulation significantly hinder the performance of III-V
	photoactive materials in PEC-WS applications. Therefore, in this project, we will
	be dealing with two main strategies to overcome these challenges i.e., (i)
	optimally controlling the hydrophilicity/hydrophobicity to facilitate the adsorption
	of water molecules and thus facilitating H2 generation, (ii) surface protection
	engineering to promote the photostability of PEC devices, especially at high pH
	and under anodic conditions. To achieve this goal, we will use morphologically
	and interfacially controlled phosphorous-rich InP and GaAsP p-type
	photocathodes (Group III-V materials). The optimal III-V photosystem will be
	supported by a hydrogen evolution cocatalyst for long-term hydrogen evolution.
	The underlying mechanisms that control the hydrogen evolution reaction (HER)
	rate will be studied in detail. Due to the multi-faceted nature of the proposed
	challenges, the solution strategies offered by this study can be extended to other
	applications such as PEC CO2 conversion to fuel.
Contact points	Dr. Ibrahim Khan: <u>ibrahim.khan@nottingham.edu.cn</u>

Team Dr. Bo Li (UNNC) and Dr. George Z. Chen (UNUK) Short introduction & description of research project Green Upcycling of Titanium and Alloying Elements with Valorisation of Metallurgical Slags via High-Temperature Molten Salt Solid-State Deoxidation Process Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-devoidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (<i>e.g.</i> , aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: • Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. • In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. • Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: • Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. • Dr. George Z. Chen (Co-Supervisor, UNIK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and	Supervisory	<u>Dr. Di Hu</u> (UNNC),
Dr. George Z. Chen (UNUK) Short introduction & Green Upcycling of Titanium and Alloying Elements with Valorisation of description of Process Metallurgical Slags via High-Temperature Molten Salt Solid-State Deoxidation Process Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (e.g., aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: • Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. • In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. • Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: • Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. • Dr. Bo Li (Co-Supervisor, UNNC): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. • Dr. Gorge Z. Chen (Co-Superviso	Team	<u>Dr. Bo Li</u> (UNNC) and
Short introduction & Green Upcycling of Titanium and Alloying Elements with Valorisation of description of Metallurgical Slags via High-Temperature Molten Salt Solid-State Deoxidation Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (e.g., aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: • Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. • In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. • Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: • Dr. Di Hu (Lead Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. • Dr. Bo Li (Co-Supervisor, UNNC): Professor in Electrochemical Technologies, expert in molten salt electrochemistry and green metal extraction. • Dr. Bo Li (Co-Supervisor, UNNC): Professor in Electrochem		Dr. George Z. Chen (UNUK)
description of research project Metallurgical Slags via High-Temperature Molten Salt Solid-State Deoxidation Process Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (e.g., aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: • Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. • In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. • Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: • Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. • Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. • Dr. Bo Li (Co-Supervisor, UNNC): Professor in Eustinable Construction Materials, expert in molten salts innovation for materials, energy, and environment.	Short introduction &	Green Upcycling of Titanium and Alloying Elements with Valorisation of
Project Process Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (e.g., aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: • Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. • In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. • Sustainable Valorisation: Innovate a dual strategy for managing window construction materials. Supervisory Team: • Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. • Dr. George Z. Chen (Co-Supervisor, UNNK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact.	description of	Metallurgical Slags via High-Temperature Molten Salt Solid-State Deoxidation
 Project Overview: This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (e.g., aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. 	research project	Process
 This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (<i>e.g.</i>, aluminum and vanadium). Additionally, the project explores the eco-friendly reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Application: 		Project Overview:
 reuse of post-treated metallurgical slag in construction materials, contributing to a circular economy. Research Direction: Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. 		This cutting-edge project aims to develop a novel, sustainable process for the extraction and refinement of high-end titanium and its alloys from metallurgical slags, while valorising the post-treated slags. The research focuses on combining high-temperature molten salt electro-deoxidation and electrorefining processes to not only achieve titanium recovery but also enable the in-situ fabrication of titanium alloys through controlled incorporation of beneficial alloying elements (<i>e.g.</i> , aluminum and vanadium). Additionally, the project explores the eco-friendly
 circular economy. Research Direction: Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. 		reuse of post-treated metallurgical slag in construction materials, contributing to a
 Research Direction: Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. 		circular economy.
 Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. 		Research Direction:
 transform post-treated metallurgical slags into high-performance, eco-friendly construction materials. Supervisory Team: Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points Dr. Di Hu: di.hu@nottingham.edu.cn 		 Molten Salt Electrochemistry: Optimise deoxidation and refining processes using advanced electrochemical techniques. In-Situ Alloy Fabrication: Innovate a dual strategy for managing window elements to promote alloy formation. Sustainable Valorisation: Implement waste recycling methods that
 Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points 		transform post-treated metallurgical slags into high-performance, eco-friendly construction materials.
 Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction. Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points Dr. Di Hu: di.hu@nottingham.edu.cn 		Supervisory Team:
 Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment. Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points 		 Dr. Di Hu (Lead Supervisor, UNNC): Associate Professor in Chemical Engineering, expert in molten salt electrochemistry and green metal extraction.
Application: Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points Dr. Di Hu: di.hu@nottingham.edu.cn		 Dr. Bo Li (Co-Supervisor, UNNC): Professor in Sustainable Construction Materials, specialist in waste recycling and eco-friendly composite materials. Dr. George Z. Chen (Co-Supervisor, UNUK): Professor of Electrochemical Technologies, expert in molten salts innovation for materials, energy, and environment.
Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact. Contact points Dr. Di Hu: di.hu@nottingham.edu.cn		Application:
Contact points Dr. Di Hu: di.hu@nottingham.edu.cn		Enthusiastic candidates with a strong background in chemical engineering, materials science, or related fields are invited to apply. Join us in advancing green extraction technologies that promise significant environmental and industrial impact
	Contact points	Dr. Di Hu: di.hu@nottingham.edu.cn

Supervisory	Prof. Jun He (UNNC)
Team	
Short introduction &	Available PhD research projects
description of	The above scholarship is to support research projects outlined under the following
research project	themes:
	Theme: Low-carbon energy
	Reductant-free low-temperature SCR process development
	Project brief:
	This project is to develop a novel reductant-free, low-temperature Selective
	Catalytic Reduction (SCR) technology using photothermal synergistic catalysis to
	address high-temperature, energy-intensive traditional SCR systems relying on
	ammonia or urea. The technology enables efficient NO $_{\rm x}$ reduction at lower
	temperature without external reducing agents, enhancing energy efficiency and
	environmental friendliness. Key innovations should include catalysts designed for
	enhanced NO adsorption and reactive radical generation, as well as composites
	that facilitate efficient electron-hole separation. This technology offers a
	sustainable solution for industrial NO $_{x}$ control in coal-fired power plants and steel
	manufacturing, aligning with stringent environmental regulations. The work is
	expected to advance photothermal catalysis theory, catalyst design, and practical
	applications, promising reduced energy consumption, lower costs, and mitigated
	secondary pollution.
Contact points	Prof. Jun He: jun.he@nottingham.edu.cn

Supervisory	<u>Shu Liu</u> (UNNC)
Team	Mengxia Xu (UNNC)
	Anand Sreeram (UNUK)
	<u>Nicholas Musyoka</u> (UNNC)
Short introduction &	Development of Photocatalytic Asphalt Mixtures with Biomass Fly Ash-supported
description of	TiO₂ for Self-cleaning Pavements
research project	
	Nitrogen oxides (NOx) and volatile organic compounds (VOCs) from vehicle
	emissions are major sources of urban air pollution. To address this issue,
	researchers are developing novel materials and technologies to mitigate their
	environmental impact. Titanium dioxide (TiO $_2$), a widely used photocatalyst, can
	effectively degrade airborne pollutants under ultraviolet light. Current studies
	demonstrate that supporting TiO $_2$ on carbon-based materials or metal oxides can
	significantly enhance its dispersion and photocatalytic efficiency. However, these
	modifications are relatively costly, limiting their large-scale application in
	pavement engineering. Therefore, recent research has focused on utilising solid
	waste as TiO₂ carriers. This study explores the feasibility of using biomass fly ash as
	a TiO ₂ carrier to develop self-cleaning asphalt mixtures. Biomass fly ash, a solid
	waste from clean energy production, possesses characteristics such as high
	alkalinity, a large specific surface area, and chemical stability. Meanwhile, its
	stronger alkalinity may further improve surface activity and dispersion during TiO $_{ m 2}$
	loading, as well as enhance the adhesion between bitumen and aggregate,
	compensating for the weakened surface adhesion of the aggregate-bitumen
	system. Additionally, environmental and economic assessments will be conducted

	to evaluate the sustainability benefits of the developed material when applied in self-cleaning pavement systems. This research could provide an innovative, cost-effective solution for improving air quality while promoting sustainable development in the construction of urban pavements.
Contact points	Shu Liu: Shu liu@pottingham edu cp
contact points	Shu Liu. Shu liu@hottingham.edu.ch

Supervisory Team	<u>Dr. Mengxia Xu</u> (UNNC) <u>Prof. Tao Wu</u> (UNNC) <u>Prof. Xiaolei Fan (</u> UNNC)
Short introduction & description of research project	Title: Development of High-Performance Catalysts for Electrochemical CO_2 Reduction Reaction to Liquid Fuels Description: This PhD project focuses on the developing advanced catalysts for the electrochemical reduction of CO_2 (CO_2RR) into liquid fuels such as formic acid and ethanol. State-of-the-art <i>in situ</i> spectroscopic techniques (e.g., FTIR, XPS, XAFS) combined with density functional theory (DFT) calculations will be applied to unravel the reaction mechanisms and guide the rational design of next-generation electrocatalysts with improved selectivity, activity, and stability. By harnessing renewable electricity in the CO_2 reduction process, this study provides a sustainable solution for reducing CO_2 emissions while producing valuable chemical feedstocks. The research aligns with global efforts to advance CO_2 utilization technologies, and supports the transition to a circular carbon economy.
Contact points	Dr. Mengxia Xu: <u>Mengxia.xu@nottingham.edu.cn</u>

C	
Supervisory	
Team	Dr. Zheng Wang (UNNC)
	<u>Dr. Jason Li</u> (UNNC)
Short introduction &	Integrated Crystallization and Separation via Novel Equipment Design
description of	
research project	Crystallization is a critical purification process in industries such as
	pharmaceuticals, chemicals, and environmental engineering. However, traditional
	methods often face challenges related to temperature control, crystal purity, and
	the inefficiency of downstream separation steps. This project aims to address
	these issues by developing a novel crystallizer that integrates separation
	mechanisms directly into the crystallization process. By introducing innovative
	design features—such as centrifugal force generation—the goal is to pre-
	concentrate or separate crystals during crystallization, reducing reliance on
	downstream filtration and eliminating temperature-related challenges.
	The project will combine computational modeling and experimental validation to
	achieve its objectives. The candidate will use computational fluid dynamics (CFD)
	to simulate and optimize the crystallizer design, focusing on fluid dynamics,
	crystal behavior, and separation efficiency. A prototype will then be developed
	and tested in the laboratory to validate its performance under real-world
	conditions. Key outcomes include improved crystal quality, reduced energy
	consumption, and a more streamlined process workflow, contributing to
	sustainable and cost-effective manufacturing practices.
	We are seeking a motivated PhD candidate with a background in chemical
	engineering, mechanical engineering, or a related field. The ideal candidate will
	have experience or interest in CFD, experimental design, and process
	optimization. This project offers an exciting opportunity to pioneer innovative
	crystallization technology and make a tangible impact on industrial processes.
Contact points	Dr. Zheng Wang: zheng.wang@nottingham.edu.cn

Supervisory	Kam Loon Fow (UNNC)
Team	Lionel O'Young (UNNC)
	Zeping Wang (UNNC)
Short introduction &	Optimization of Green Polycondensation Process and Property Enhancement of
description of	PBT for High-Value Medical and Textile Applications
research project	
	Area of work
	Polybutylene terephthalate (PBT) is a high-performance engineering
	thermoplastic widely used in the industries due to its excellent mechanical,
	thermal, and chemical properties. It is foreseeable that there is a growing
	demand for PBT with enhanced properties to meet the needs of advanced
	applications, particularly in the medical and textile industries. PBT is typically
	tabricated from the polycondensation of oligomers of terephthalic acid (TPA) and
	1,4-but ane dior (BDO) and the polycondensation process conditions can be tuned
	nolycondensation process suffers from several major drawbacks, such as the use
	of non-removable homogeneous catalysts and non-sustainable petrochemical-
	based reactants. This project aims to develop a greener polycondensation process
	for making PBT and/or explore innovative methods to enhance the properties of
	PBT, making it suitable for high-value applications such as biocompatible medical
	devices and functionalized textiles.
	Research objectives
	This proposed research project will focus on several key themes as exemplified
	below:
	1. <i>Optimization of a greener polycondensation process</i>
	 Develop and evaluate the performance of heterogenous catalysts in the
	polycondensation process.
	Investigate the role of various design parameters in improving the
	efficiency and sustainability of the polycondensation process.
	 Develop a reaction model to predict and optimize the properties of PBT,
	such as polymer molecular weight distribution and thermal stability.
	2 Property enhancement for medical and textile applications
	 Incorporate green additives (e.g. papofillers, chain extenders)
	antimicropial agents) to tailor properties of PBT for specific applications
	Evaluate the mechanical, thermal, and chemical properties of enhanced
	PBT.
	• Test the biocompatibility of PBT for medical applications and the
	durability of PBT fibers for textile applications.
	 Assess biodegradability and recyclability of modified PBT, supporting
	green chemical principles.
Contact points	Kam Loon Fow, <u>Kam-loon.tow@nottingham.edu.cn</u>
	Lioner O roung, <u>Lioner.Oroung@nottingnam.edu.cn</u>

	1
Supervisory	Yong SUN
Team	
Short introduction	The objective of this research is to address the knowledge gaps by elucidating
& description of	the fundamental mechanisms governing the diffusion of solid-phase reagents in
research project	molten salt systems. This will involve an in-depth exploration of how the
<300 words	coupled-vacancy diffusion (CVD) mechanism triggers chemical bond
	rearrangements between PG and carbon, ultimately enhancing the thermal
	reduction process. By examining the interactions between solid reagents and
	molten salt molecules, we aim to identify factors that optimize reaction
	conditions and improve the overall efficiency of gypsum reduction.
	This research continues our ongoing work in both commercial and fundamental
	projects focused on reducing hazardous industrial wastes. To the best of our
	knowledge, no previous studies have comprehensively investigated the
	molecular mechanisms behind the interaction of molten salts with solid reagents
	during the thermal reduction of phosphogypsum. The findings will contribute to
	advancing molten salt science and provide a foundation for developing more
	sustainable, cost-effective approaches to environmental remediation and waste
	treatment in industrial settings.
	The supervisory team, led by Dr. Yong SUN (kinetic modeling, reaction
	engineering characterization, and molten salt synthesis, molecular simulation),
	supported by Dr. Kow Kien Woh (solid waste and reaction engineering) and Prof.
	Jonathan D. Hirst (theoretical modeling), combines both hands-on and
	theoretical expertise, ensuring a well-rounded approach to the project's success,
	which is also pivtal to smooth running of this PhD project.
Contact points	Yong SUN: yong.sun@nottingham.edu.cn

Supervisory	Prof. Bencan Tang (UNNC)
Team	Prof. Jonathan D. Hirst (UNNC)
	Dr Kam Loon Fow (UNNC)
Short introduction &	Project Title:
description of	Development of Automated Flow Chemistry Reaction Platform for the
research project	Production of 1,3-Propanediol
	Developing new reaction technology to realize challenging chemical reactions as such with automatic reaction control would increase the production efficiency of many important chemicals and is to be embraced by chemical industry.
	This research aims to establish a fully automated intelligent flow chemistry reaction platform for the optimization of reaction conditions and pilot production of important chemicals. The intelligent flow chemistry reaction platform will be based on flow chemistry and Bayesian optimization theory. It will enable the injection of raw materials via an HPLC pump, with parameters such as substrate type, concentration, solvent, and catalyst being controlled. By integrating Bayesian

	optimization algorithms, the platform will optimize the reaction conditions, leading to the identification of the optimal production conditions. This method will significantly reduce human, material, and time resources during the optimization process. Moreover, when scaling up to production, the flow chemistry equipment can be easily adapted for increased scale and capacity, while minimizing potential hazards and waste in the production process.
	The ideal candidate would be students with bachelor's and master's degrees from Chemistry and Chemical Engineering. The candidate should have strong interests in flow chemistry, programing and coding, and should have good problem-solving skills, including technical and theorical problems. We only encourage hardworking and ambitious students to apply for this position.
Contact points	Informal inquiries may be addressed to <u>Prof. Bencan Tang</u> via email: bencan.tang@nottingham.edu.cn.

Supervisory	Bo Li (UNNC)
Team	Kow Kien Woh (UNNC)
	Sreeram, Anand (UNNC)
Short introduction	Engineered controlled low-strength materials using multiple solid waste-
& description of	derived binders and excavated soil: mechanical performances and
research project	stabilisation mechanisms
Contact points	Controlled Low-Strength Material (CLSM) is a flowable, low-strength construction material commonly used for backfilling. The properties of most existing CLSM depend on carbon-intensive cement. Furthermore, its high-water content results in slow setting times and limited early strength, which negatively impacts construction efficiency. Therefore, developing a novel type of binder that is more environmentally friendly, cost-effective, and capable of providing higher early strength for CLSM is crucial for enhancing its overall performance and eco-friendliness. Novel low-carbon cementitious materials can be prepared using industrial residues. Therefore, the proposed project aims to develop an innovative CLSM using multiple solid wastes as binders and excavated waste soil as the aggregate. The specific objectives include: 1) to develop a novel low-carbon binder with both high early strength and improved durability based on a deep understanding of cementitious mechanisms within a multi-solid waste system; 2) to investigate the impact of chemical addition on accelerating the reaction process of waste-based cementitious materials; 3) to develop a CLSM with comprehensive performance improvements across all stages by analysing the time-dependent microstructural evolution of the binder-water-soil triphasic system; and 4) to assess the environmental benefits of CLSM through a Life Cycle Assessment, considering its green composition, low-effort construction methods, and shortened construction cycles. Overall, developing eco-friendly binders from industrial by-products presents significant potential for producing low-carbon CLSM with superior engineering performance.
Contact points	Prot. Bo LI, <u>bo.il@nottingnam.edu.cn</u>

Supervisory	Prof. Cheng Heng Pang (UNNC)
Team	
Short introduction	
& description of	AI-Assisted Green Conversion of Biomass towards Energy Security and Carbon
research project	Neutrality
	This PhD project is focused on simultaneously deriving clean energy and developing advanced functional materials from renewable materials, including biomass and solid wastes, via AI-assisted green chemistry and clean processing. A combined experimental and computational studies will be used to ensure conversion efficiency, selectivity and sustainability. The ability to transform waste materials into value-added end-products is pivotal in the collective efforts towards carbon-neutrality.
Contact points	Prof. Cheng Heng Pang (<u>ChengHeng.Pang@nottingham.edu.cn</u>)