Research project and supervisor team

Supervisory	Dr. Enrico Marsili
Team	Dr Tania Dottorini
	Dr. Honglei Zhang
Short	Dr Stephan Heeb
introduction	Microplastics (MP) and antibiotics are two priority seawater pollutants that enter
&	microbial cells through several routes, e.g., protein channels in the outer membrane
description	(Gram-negative bacteria) and diffusion in the peptidoglycan layer (Gram-positive
of research	bacteria). Due to their similar routes of entry, bacteria have developed similar
project	responses to microplastics and antibiotics, which rely on efflux pump to decrease the
	pollutant concentration in the cells. Therefore, the increase of microplastics pollution is
	suspected to contribute to the emergence of antibiotic resistance in marine and
	terrestrial microorganisms, increasing the risk that this resistance might be transferred
	to pathogens, thus contributing to increasing antimicrobial resistance (AMR) and the
	associated burden on the health system. However, it is still unclear the interplay of MP-
	induced resistance with other antibiotic resistance mechanisms, like the biofilm
	formation. Our hypothesis is that, while micro- and nano-plastic (MNP) increase the risk
	of AMR emergence, this could happen through the biofilm modulation, and not only
	through direct effect on planktonic cells. In this project, we will test this hypothesis.
	Specifically, we will determine how the presence of MNP determine biofilm formation,
	microstructure and activity and how it increase the overall AMR in biofilms. In the first
	part of the project, we will use single species biofilm model with Gram-negative (e.g.,
	Pseudomonas aeruginosa) and Gram-positive (e.g., Enterococcus faecalis) pathogens
	present in coastal environments, and determine the effect of selected MNP on biofilms
	structure and function via biochemical, microscopy and bioelectrochemical assays. In
	the second part, we will transcriptomics to measure the expression of key genes known
	to contribute to the AMR in presence and absence of MNP. In the third part, we will
	work on mixed species biofilm, assembled from model biofilm-forming microorganisms
	used in the project, and on mixed microbial consortia from coastal seawater in the
	Ningbo area. In the fourth part, we will determine how photocatalytic process, which
	degrade partially MNP, contribute to the AMR in environmental mixed microbial
	consortia. This project will contribute clarifying the mechanism of MNP-related AMR in
	realistic microbial communities (i.e., biofilm rather than planktonic cells) and inform the
	design of novel photocatalytic MNP degradation processes that can minimize the
	emergence of AMR in environmental biofilms. The proposed supervisors have the right
	expertise and resources for the project. This project has the potential to start a new
	research area at UNNC, which will concern the dynamic of AMR in response to novel
	pollutants and the risk of horizontal gene transfer to human pathogens.
Contact	Dr. Enrico Marsili, enrico.marsili@nottingham.edu.cn
points	Dr Tania Dottorini, <u>tania.dottorini@nottingham.ac.uk</u>
	Dr. Honglei Zhang, <u>Honglei-Zhang@nottingham.edu.cn</u>
	Dr. Stephan Hebb, <u>Stephan.heeb@notthingham.ac.uk</u>
	Dr. Stephan nebb, <u>Stephan neeberiottiningham.de.uk</u>