Research project and supervisory team

Check detailed information by clicking each project title below:

Green Chemicals and Energy

- 1. <u>Controlled Synthesis of S-Scheme-based Heterojunctions for Efficient Photocatalytic H2 Evolution and CO2</u> <u>Conversion (Dr. Shahid Iqbal)</u>
- 2. <u>Controlled synthesis of 2D/2D heterostructures and mechanism of visible-light-driven S-scheme overall</u> water splitting (Dr. Shahid Igbal)
- 3. <u>Turquoise hydrogen production from bio-methane pyrolysis targeting high-value solid carbons (Dr. Nicholas</u> <u>Musyoka)</u>
- 4. <u>Catalyst development for direct conversion of CO2 to methanol (thermo-catalytic reaction route)(Dr.</u> <u>Nicholas Musyoka)</u>
- 5. <u>Modelling of fluidised bed reactor for non-catalytic and catalytic methane reforming using chemical reactor</u> networks and detailed kinetics (Dr. Paulo Debiagi)
- 6. <u>Kinetic Modelling of Thermochemical Conversion of Municipal Solid Waste for Production of Syngas,</u> <u>Chemicals, Heat and Electricity Generation (Dr. Paulo Debiagi)</u>
- 7. Design of Novel 2D Materials for Green Fuels (Dr. Muhammad Sajjad)
- 8. <u>Surface and Interface Engineering of Two-dimensional Materials for Green Fuels via Catalysis (Dr.</u> <u>Muhammad Sajjad)</u>
- 9. Process Design and Development (Dr. Lionel O'Young)
- 10. <u>Accumulating & Controlling Mechanism of Dominant Bacteria during Particle Enhanced biological</u> <u>Wastewater Treatment (Dr. Yuanyuan Shao)</u>
- 11. <u>Development of a fluidization system with internal heaters for polysilicon production (Dr. Xiaoyang Wei)</u>
- 12. <u>Novel catalysts design for high-value products derived from methyl aromatic hydrocarbons (Dr. Xiaoxia Ou)</u>
- 13. <u>CO₂ hydrogenation to methane and methanol (Dr. Xiaoxia Ou)</u>
- 14. <u>C2-oriented photocatalysts design and CO₂ reduction performance enhancement mechanism (Dr. Honglei</u> <u>Zhang</u>)
- 15. <u>Probabilistic machine learning analysis of electrochemical data for characterization of mixed-species</u> microbial biofilms (Dr. Enrico Marsili)
- 16. Simultaneous Supercritical CO2 Extraction and Sterilization for Bio-safe Edible Oils (Dr. Dongbing Li)

Intelligent Manufacturing

- 17. Multi-material DLP printer for fabricating programmable devices (Dr. Yinfeng He)
- 18. <u>Multi-Material, Multi-Functional Device Design for Voxel- Based Additive Manufacturing (Dr. Yi Nie)</u>
- 19. Innovative vibration control of electro-mechanical drive trains using active bearings (Dr. Dunant Halim)
- 20. Human Computer Interaction (Prof. Xu Sun)
- 21. <u>Fundamental research on scalability, accuracy, robustness and interpretability of neural networks (Prof. Jim</u> Greer)
- 22. Learning Guided Combinatorial Optimisation (Prof. Ruibin Bai)

Life Science and Healthcare

- 23. <u>Tackling the pandemic of antibiotic-resistant infections: An artificial intelligence approach to new druggable</u> <u>therapeutic targets and drug discovery (Dr. Tania Dottorini)</u>
- 24. <u>To explore the genetic mechanisms of multiple pain phenotypes based on the UK Biobank cohort (Dr.</u> <u>Weihua Meng)</u>
- 25. Wearable Optical Biosensor (Dr. Jing Wang)
- 26. Al Enabled Drug Discovery (Dr. Bencan Tang)

Ducto at the	
Project title	Controlled Synthesis of S-Scheme-based Heterojunctions for Efficient
	Photocatalytic H2 Evolution and CO2 Conversion
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Shahid Iqbal
Team	Muhammad Sajjad
Short	Fuel shortages and environmental problems have been substantially
introduction of	exacerbated by the lessening of fossil energies, such as coal, natural gas,
research project	and petroleum, as well as the considerable rise in CO2 emissions.
	Heterojunction engineering is urgently needed because photoinduced
	charge carrier recombination occurs at high rates and because the
	capacity of these carriers to conduct both oxidation and reduction in a
	single photocatalyst is restricted. The step-scheme (S-scheme)
	heterojunction scheme has exhibited excessive potential as a state-of-the-
	art photocatalytic system by accelerating the separation and carriage of
	photogenerated electron-hole pairs as well as obtaining high photoredox
	capacity. MXenes, a unique family of two-dimensional (2D) materials like
	Ti3C2Tx, have drawn growing amounts of research attention because of
	their peculiar physicochemical and electrical characteristics, which vary
	very dramatically from those of their bulk counterparts. For
	photocatalytic processes, both heterojunctions will lengthen the lifespan
	of photogenerated e- and h+ that are present in the appropriate band
	locations. The intrinsic link between the thickness of the co-catalyst
	(Ti3C2Tx) and the photocatalytic activities as well as the evidence of an
	electron-hole pair migration route using the S-scheme will also be
	investigated as additional possible characteristics of this research. The
	project's results will provide a better comprehension of the photocatalytic
	process and reaction mechanism in addition to the development and
	implementation of multifunctional numerical tools for the next research.
Contact points	Dr. Shahid Iqbal <u>Shahid.Iqbal@nottingham.edu.cn</u>
•	

Project title	Controlled another is of 2D/2D betweet wetweet and much an important in the
Project title	Controlled synthesis of 2D/2D heterostructures and mechanism of visible-
	light-driven S-scheme overall water splitting
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Shahid Iqbal
Team	Mina Liu
Short	Overall water splitting (OWS) employing a particulate photocatalyst and
introduction of	solar energy, where the light energy is transformed into clean H ₂ energy,
research project	is a technologically simple and cost-competitive route toward sustainable
	H ₂ generation owing to its potential for widespread use. Limited visible-
	light harvesting, improper coupling of catalyst components, insufficient
	catalytic active sites and unraveling the sluggish charge separation for
	step-scheme (S-scheme) heterostructure photocatalysts remain a core
	challenge toward OWS. The project's goal is to design and develop a well-
	defined 2D/2D S-scheme heterojunction at BiVO ₄ /BaTaO ₂ N interface via
	$Ti_3C_2T_x$ redox mediator served as to promote the surface reaction
	between the H ₂ (FeNiP/BaTaO ₂ N) and O ₂ (Co(OH) ₂ /BiVO ₄) evolving
	components. This project will explore the intrinsic relationship between
	the thickness of the redox mediator ($Ti_3C_2T_x$) and photocatalytic activities.
	The designed heterostructures will be fabricated via the self-assembly
	method, characterized by spectral analyses and the first principle. The
	project will reveal that high-quality S-scheme heterojunction between
	$BiVO_4$ and $BaTaO_2N$ will play an important role in maintaining the
	photogenerated electron-hole pair with strong redox abilities. Moreover,
	the synergistic cooperation of the S-scheme heterojunction and $Ti_3C_2T_x$
	will explain the enhanced photocatalytic ability and will provide additional
	highly exposed active sites for surface reactions.
Contact points	Dr. Shahid Iqbal <u>Shahid.Iqbal@nottingham.edu.cn</u>

Project titleTurquoise hydrogen production from bio-methane pyrolysis targeting high-value solid carbonsProgrammePhD Chemical EngineeringDepartment or SchoolDepartment of Chemical and Environmental EngineeringResearch areaRenewable Energy & Energy StorageSupervisory TeamNicholas Musyoka Paulo Debiagi Xiaoyang WeiShort introduction of research projectBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent materials. The experimental activity will be conducted in parallel with
ProgrammePhD Chemical EngineeringDepartment or SchoolDepartment of Chemical and Environmental EngineeringResearch areaRenewable Energy & Energy StorageSupervisory TeamNicholas Musyoka Paulo Debiagi Xiaoyang WeiShort introduction of research projectBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
Department or SchoolDepartment of Chemical and Environmental EngineeringResearch areaRenewable Energy & Energy StorageSupervisory TeamNicholas Musyoka Paulo Debiagi Xiaoyang WeiShort introduction of research projectBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
SchoolResearch areaRenewable Energy & Energy StorageSupervisoryNicholas MusyokaTeamPaulo Debiagi Xiaovang WeiShortBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
Research areaRenewable Energy & Energy StorageSupervisory TeamNicholas Musyoka Paulo Debiagi Xiaoyang WeiShort introduction of research projectBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
Supervisory Nicholas Musyoka Team Paulo Debiagi Xiaoyang Wei Short Biogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
TeamPaulo Debiagi Xiaoyang WeiShortBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
Xiaoyang WeiShortBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
ShortBiogas is a promising renewable energy source and has been gaining increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
introduction of research project increasing attention over the years. Previous high-level techno-economic studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
research project studies reported that the feasibility of turquoise hydrogen production from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
from biogas/bio-methane is heavily dependent on the price of the hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
hydrogen and carbon product streams. Therefore, the main aim of the proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
proposed study is to develop a process for producing high-value carbons that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
that will make the biogas-based turquoise hydrogen production process more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
more feasible and economically competitive. A novel aspect of the study will be the utilisation of pristine and modified catalytic and sorbent
will be the utilisation of pristine and modified catalytic and sorbent
materials. The experimental activity will be conducted in parallel with
modelling and simulation activities, using methods of detailed chemical
kinetics, reactor network modelling and computational fluid dynamics.
These activities are complementary in unravelling details of the process
that cannot be easily measured or predicted. Importantly, the project
aims to eventually advance towards fabrication of a
demonstratable/customizable modular unit tailored for the pyrolysis
reaction with a possibility to also employ a modified fluidised bed system
for the continuous production of hydrogen from the renewable biogas
feedstock.
Contact points Prof. Nicholas Musyoka (<u>Nicholas.Musyoka@nottingham.edu.cn</u>)

Project title Catalyst development for direct conve Catalytic reaction route) Catalytic reaction route) Programme PhD Chemical Engineering Department or Department of Chemical and Environm	
Department or Department of Chemical and Environm	
	nental Engineering
School	
Research area Renewable Energy & Energy Storage	
Supervisory Nicholas Musyoka	
Team Mengxia Xu	
Paulo Debiagi	
Short The production of methanol and its de	
introduction of the use and storage of hydrogen produced	
research project sources such as solar photovoltaics (P\	
mind that captured CO2 can be used a	•
the adoption of wide-scale power-to-n	0 1 7
important role in large-scale CO2 recyc	•
promising means for combating the ris	
could assist many countries in meeting	
commitments. The catalytic conversion	
hydrogenation can be achieved via var	-
catalytic reaction, photo-catalysis, elec	
Among them, the thermo-catalysis rou	
prospects for faster transition to comm	-
been demonstrated at huge pilot plant	•
favourably compete with the convention	
for continued development of efficient	
catalysts. Therefore, the proposed pro efficient and effective catalysts followi	
use of mixed oxides such as ZnO-ZrO2	
promoters' effects and (ii) promotiona	-
CuZn catalyst. Supported by experiment	
catalysts, kinetic mechanism will be de	
modelling will be incorporated in the s	•
the OPENSMOKE++ framework in kine	
laboratory-scale reactors, the chemica	-
be employed.	
	syoka@nottingham.edu.cn)

Draiast title	
Project title	Modelling of fluidised bed reactor for non-catalytic and catalytic methane
	reforming using chemical reactor networks and detailed kinetics
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Xiaolei Fan
Team	Paulo Debiagi
	Xiaoyang Wei
Short	Global climate crisis calls for urgent greenhouse gases (GHG) emission
introduction of	reduction. Carbon capture usage and storage (CCUS) technologies are
research project	promising to support the establishment of sustainable industry and
	economy. Dry-reforming of methane (DRM) offers a dual environmentally significant solution, by consuming two GHG in the process, and producing syngas (mixture of H ₂ and CO) that serves as building blocks for green chemistry. Fluidised bed reactors (FBR) are ideal candidates for DRM, due to their favourable mixing features, near-constant temperatures and good operating flexibility. Simulation of thermochemical conversion processes provides powerful tools for process development, optimization and scale-up. In this work, we propose the numerical investigation of the DRM process in FBR implementing the state-of-the-art detailed kinetic mechanisms and chemical reactor networks. The project outcomes will allow a deeper understanding of the process and reactor dynamics, together with the development and establishment of multi-purpose numerical tools for future investigations.
Contact points	Dr. Paulo Debiagi paulo.debiagi@nottingham.edu.cn

Project title	Kinetic Modelling of Thermochemical Conversion of Municipal Solid
	Waste for Production of Syngas, Chemicals, Heat and Electricity
	Generation
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Dongbing Li
Team	Paulo Debiagi
	<u>Xiaoyang Wei</u>
Short	Global climate crisis calls for urgent greenhouse gases (GHG) emission
introduction of	reduction. Energy demand worldwide is surging, which challenges the
research project	decarbonisation process and decrease of GHG emissions. About two
	billion tons of municipal solid waste (MSW) was generated in 2016, and
	management of these material is a challenge. While metals, glass and
	construction waste are the majority of the inorganic fraction, plastics,
	food waste, textile and paper characterize the majority of the organic
	fraction. These materials represent a hazard to human health and to the
	environment. The thermochemical conversion of MSW offers a dual
	solution: (1) waste management by consuming the materials, and (2)
	sustainable energy and green chemistry, for converting MSW into value-
	added products such as syngas, chemicals, heat and electricity.
	Development of thermochemical conversion technologies for MSW is
	challenging because of the complex and variable composition of the
	feedstock, which significantly affects the required pre-treatment, the
	heating value, the operating conditions and the products. Process
	simulation is an important tool to manage these complexities, providing
	valuable predictions to develop, control, optimize and scale-up the
	process. Detailed chemical kinetics are capable of giving accurate reacting
	system predictions, but appropriate material characterization is required.
	In this project, we propose an investigation of the local MSW material,
	aiding the definition of a model waste-fuel that will serve as the base to
	develop a comprehensive kinetic model for the thermochemical
	conversion of MSW. The project outcomes will allow a deeper
	understanding of the behaviour of MSW in high-temperature
	thermochemical conversion, together with the development and
	establishment of a multi-purpose numerical framework for future
	investigations of this topic on larger scales.
Contact points	Dr. Paulo Debiagi paulo.debiagi@nottingham.edu.cn

Project title	
	Design of Novel 2D Materials for Green Fuels
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Muhammad Sajjad
Team	
Short	The search for novel catalysts for green fuel production is vital in our
introduction of	increasing demand for energy resources in our daily life. These catalysts
research project	enable the conversion of environmentally harmful greenhouse gases such
	as carbon dioxide to usable fuel such as methane and ethanol. Research
	and discovery into such catalyst materials that can generate green fuel
	with high efficiency are paramount. Two-dimensional (2D) materials have
	set of unique properties including high surface to volume ratio, but are
	not promising for catalysis due to their inertness of their surfaces. One
	the other hand, high-entropy 2D materials (like MXenes and transition
	metal dichalcogenides) have recently got attention due to their high
	mechanical stiffness and favourable chemical and electronic properties
	for catalytic applications. In addition, high-entropy materials, such as
	high-entropy oxides and nitrides, are highly disordered and contain
	several metal atoms in contrast to pristine ordered phases.
	The research project sime to evalure such motorials (feaucing on high
	The research project aims to explore such materials (focusing on high-
	entropy MXenes and high-entropy transition metal dichalcogenides) for
	their application in green fuel production. Using state-of-the-art first-
	principles calculations and molecular dynamics simulations, we propose
	an investigation of mechanical, thermodynamic stability, chemical, and
	electronic properties, followed by their applications in catalysis. The
	exploration of efficient and cost-effective alternatives to precious metal
	catalysts will pave the way for sustainable energy solutions and contribute
	to a cleaner and greener future.
Contact points	Dr. Muhammad Sajjad muhammad.sajjad@nottingham.edu.cn

Ducie et title	
Project title	Surface and Interface Engineering of Two-dimensional Materials for Green
	Fuels via Catalysis
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Muhammad Sajjad
Team	
Short	The increasing demand for alternative energy sources, driven by the
introduction of	depletion of traditional fossil fuels, necessitates the development of
research project	sustainable and eco-friendly energy resources. Hydrogen, due to its
	abundance and clean nature, holds immense potential as a green fuel;
	however, conventional production methods emit CO ₂ , contributing to
	global warming. Two-dimensional (2D) materials, with their unique
	mechanical and electrical properties and large surface area, offer
	promising alternatives for electrode materials. Nevertheless, their pristine
	form exhibits limited catalytic efficiency. Surface and interface
	engineering have emerged as powerful tools to enhance the catalytic
	performance of 2D materials, making them viable candidates for green
	fuel production via catalysis.
	Tuel production via catalysis.
	This research project aims to explore the atomic-level understanding of
	surface and interface engineering of 2D materials to design novel catalyst
	materials for green fuel production. Utilizing advanced computational
	methods and simulations, the project seeks to uncover strategies for
	enhancing the catalytic performance of 2D materials. The exploration of
	efficient and cost-effective alternatives to precious metal catalysts will
	pave the way for sustainable energy solutions and contribute to a cleaner
	and greener future.
Contact points	Dr. Muhammad Sajjad muhammad.sajjad@nottingham.edu.cn

Project title	Process Design and Development
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	Department of Chemical and Environmental Engineering
Research area	Green Chemical Processes & Process Intensification
Supervisory	Lionel O'Young
Team	Kam Loon Fow
	Kien Woh Kow
Short	In separation of mixture, it is crucial to select the appropriate
introduction of	combination of driving forces. To achieve a safe, economical, and
research project	operable separation process, large number of feasible options will need to
	be studied in the design stage. Unfortunately, equilibrium data are not
	readily available for the system especially while developing a new
	processing route. In addition, it is costly to obtain such equilibrium data
	empirically.
	In this work, it is aimed to develop a robust prediction method to supply
	the necessary data for the above process at suitable accuracy as needed
	for various stages of process development. Furthermore, experiments will
	be designed to validate and increase the accuracy of the calculation at the
	given design/operation condition.
	In this project, successful candidates will be provided with the intensive
	training about process development especially in the area of separation
	process. In addition to experimental works, a systematic use of process
	modelling and machine learning algorithms will be beneficial to the
	optimization of the designed process. There are also opportunities for the
	developed method to be validated on industrial-linked projects.
Contact points	Lionel O'Young, Lionel.OYoung@nottingham.edu.cn
	Kam Loon Fow, Kam-Loon.Fow@nottingham.edu.cn
	Kien Woh Kow, <u>Kien-Woh.Kow@nottingham.edu.cn</u>

Project title	Accumulating & Controlling Mechanism of Dominant Bacteria during
	Particle Enhanced biological Wastewater Treatment
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Green Chemical Processes & Process Intensification
Supervisory	Yuanyuan Shao
Team	Dongbing Li
	Xiaoyang Wei
Short	Particle Enhanced Bio-Reactor (PEBR) has been developed by the PI's
introduction of	team for efficiently biological wastewater treatment, which leverages the
research project	suspended particles as the carrier to provide numerous surface area for
	the growing of bacteria, thus intensifying the biological treatment process
	and enhancing the performance of the system.
	The project is proposed to extent the application of this technology for
	the industrial wastewater containing high concentrations of COD and/or
	NH4-N. Ph.D. candidates will focus on detailing mechanisms of growing
	and accumulating of working bacteria on the surface of carriers and R&D
	of multi-functional particles, respectively
Contact points	Dr. Yuanyuan Shao yuanyuan.shao@nottingham.edu.cn

Project title	Development of a fluidization system with internal heaters for polysilicon production
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Green Chemical Processes & Process Intensification
Supervisory	Xiaoyang Wei
Team	Yue Yuan
Short	Multiphase flow systems are widely used in chemical, pharmaceutical,
introduction of	environmental industries. However, the multiphase flow is usually highly
research project	dynamic and very complex, hindering the development of multiphase
	flow theory and the optimization of multiphase flow systems.
	In our lab, PhD students will work closely with industrial partners on multiphase flow systems, such as chemical reactors, dry powder inhalers, medicine coating, and protein recovery from liquid streams. Cutting-edge technologies, including artificial intelligence (AI), 3-D printing, high-speed camera, intrusive probes, will employed to experimentally characterize the multiphase flow. Referring to the experimental data, numerical models will be developed with workstations, servers and supercomputers. Finally, multiphase flow systems can be designed and intensified for specific industrial processes.
Contact points	Dr. Xiaoyang Wei xiaoyang.wei@nottingham.edu.cn

Project title	Novel catalysts design for high-value products derived from methyl
	aromatic hydrocarbons
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Green Chemical Processes & Process Intensification
Supervisory	Xiaolei Fan
Team	Xiaoxia Ou
Short	Benzyl alcohol, benzaldehyde and benzoic acid are high-value chemicals
introduction of	widely using in pharmaceutical, pesticide and other industries, which are
research project	generally produced by selective catalytic oxidation of aromatic
	hydrocarbons. The process usually requires high pressure and high
	temperature, resulting in low selectivity to high-value products. In this
	research, novel and effective catalysts will be designed to enable high
	conversion of aromatic hydrocarbons with high selectivity to valuable
	products under milder conditions. Catalyst designs and syntheses,
	characterizations and systematically catalytic performance tests will be
	conducted, as well as mechanism and kinetic study, which will facilitate
	the rational design of novel catalytic formulations for selective catalytic
	oxidation of aromatic hydrocarbons and gain mechanistic insights of the
	systems for pilot test and scaling-up.
	, , , , , , , , , , , , , , , , , , , ,
	The research project will develop high-performance supported catalyst
	for selective catalytic oxidation of aromatic hydrocarbons. Mechanism
	study will help to understand interactions between different components
	(catalyst active phase, support, promoter, oxidizing agent), and the
	dynamic behaviours will be clarified to rationally develop new catalytic
	formulations.
Contact points	Dr. Xiaoxia Ou xiaoxia.ou@nottingham.edu.cn
contact points	

Project title	CO ₂ hydrogenation to methane and methanol
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Green Chemical Processes & Process Intensification
Supervisory	Xiaolei Fan
Team	<u>Xiaoxia Ou</u>
Short	Methane (CH ₄) and methanol (CH ₃ OH) are key fuels and platform
introduction of	chemicals for many important applications. They are conventionally
research project	obtained from fossil resources such as natural gas and coal. Hence, the
	use of the captured CO_2 as the carbon source can be a sustainable option
	to produce green CH ₄ and CH ₃ OH for sustainable development of the
	society. Built on our previous research findings, this project will focus on
	the further development of economic catalysts based on transition metals
	such as Ni for methanation and Cu for hydrogenation to green methanol,
	which will be supported by relevant in situ and kinetic studies to gain
	mechanistic insights of the systems for pilot test and scaling up.
Contact points	Dr. Xiaoxia Ou xiaoxia.ou@nottingham.edu.cn

Project title	C2-oriented photocatalysts design and CO ₂ reduction performance
	enhancement mechanism
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Renewable Energy & Energy Storage
Supervisory	Honglei Zhang
Team	
Short	Visible-light-driven conversion of CO ₂ into fuels or useful chemicals is a
introduction of	promising methodology for solving the world crises of energy supply and
research project	the rising atmospheric CO ₂ level. The reported products from CO ₂
	photocatalytic reduction are mainly C1 products, C2 products with higher
	values are sparsely reported or they are produced at ultra-low selectivity.
	Novel photocatalysts or catalytic system will be dedicatedly synthesized
	for C2 production in photocatalytic reduction of CO ₂ .
Contact points	Dr. Honglei Zhang honglei-zhang@nottingham.edu.cn

Project title	Probabilistic machine learning analysis of electrochemical data for
	- ·
	characterization of mixed-species microbial biofilms
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Green Chemical Processes & Process Intensification
Supervisory	<u>Enrico Marsili</u>
Team	<u>Daniele Garrisi</u>
Short	Biofilm electrochemistry can contribute to the resolution of mixed-species
introduction of	biofilms, due to its low cost, real-time and non-destructive characteristic.
research project	While biofilm electrochemistry cannot provide a final identification of
	each microbial species, it is in theory possible to analyse the specific
	signature of each microbial species using probabilistic machine-learning
	(PML) methods. This project aims to develop a novel method for real-
	time, online characterization of mixed-species biofilms using
	bioelectrochemical methods in combination with PML driven data
	analysis.
	The PhD student will focus on the writing of the Probabilistic Machine
	Learning (PML) code and electrochemical data analysis (acquired by
	another PhD student in our group) for the modelisation of mixed-specie
	biofilms. S/he would have a background in Data Science/Computer
	Science/Physics/Applied Mathematics/Engineering with a strong interest
	in Mathematical and Computational Biology. The PhD student will work
	closely with the other PhD student in the project to optimize the data
	acquisition pipeline. S/he will be co-supervised by Prof Alberto D'Onofrio,
	a PML and Mathematical/Computational Biology expert at University of
	Trieste, Italy and by Prof Daniele Garrisi, an expert mathematician from
	UNNC. The project might include a short-term secondment at University
	of Trieste for training in mathematical methods and data analysis.
Contact points	Dr. Enrico Marsili enrico.marsili@nottingham.edu.cn
	Dr. Daniele Garrisi daniele.garrisi@nottingham.edu.cn
	bi bancie danisi danicie.ganisie nottingham.edu.th

Project title	Simultaneous Supercritical CO ₂ Extraction and Sterilization for Bio-safe
	Edible Oils
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Smart Food
Supervisory	Dongbing Li
Team	<u>Enrico Marsili</u>
	<u>Yuanyuan Shao</u>
Short	Woody oil tree species (such as Acer truncatum, walnut, and sea buckthorn)
introduction	can produce high-end edible oils. Consumers often ingest it orally or from
of research	cold dishes, bypassing the high-temperature cooking and sterilization
project	process. Therefore, it is extremely important to identify the potentially
	pathogenic microorganisms and perform sterilization treatment to improve
	food safety. Experiments have shown that the seed oil of Acer truncatum
	produced by mechanical pressing contains a considerable amount of active
	microorganisms, while the seed oil obtained by supercritical CO ₂ extraction
	has a much lower amount of live microorganisms. This project begins with
	the identification of pathogenic microorganisms in the seed oils. The effects
	of various supercritical CO ₂ extraction operating parameters will be
	investigated and the underlying mechanisms for significant sterilization will
	be elucidated. Improved measures to overcome the inhibitory effect of oil
	substrate conditions on supercritical CO ₂ sterilization are then developed,
	establishing the optimal process conditions for simultaneous supercritical
	CO_2 extraction and sterilization (one-pot method). Finally, the oxidation
	stability (shelf life) of the oil product will be evaluated and the relationship
	between oxidation stability and microbial composition, enzyme
	composition, and activity of seed oils will be demonstrated. The successful
	completion of this project can provide a complete scientific theory and
	technical guidance for the production of woody seed oils by simultaneous
	supercritical CO ₂ extraction and sterilization, and provide new reference
	information for the food safety of other vegetable oils.
	This project's specific research objectives are as follows:
	1) To clarify the inhibitory effect of seed oil substrate conditions on the
	supercritical CO_2 sterilization process, its mechanism of action, and
	effective improvement measures; 2) To develop the simultaneous
	supercritical CO ₂ extraction and sterilization process. The optimal
	technological conditions are evaluated in order to evaluate the oil product
	quality indicators (particularly oxidation stability), and the response
	mechanism between the oxidation stability of seed oil and microbial
Contact reints	composition, enzyme composition, and activity will be clarified.
Contact points Back to Page 0	Dongbing Li dongbing.li@nottingham.edu.cn

Project title	Multi-material DLP printer for fabricating programmable devices
Programme	PhD PhD IAMET New Materials and New Equipment
Research area	Additive Manufacturing
Department or	Department of Mechanical, Materials and Manufacturing Engineering
School	, , , , , , , , , , , , , , , , , , , ,
Supervisory	Yinfeng He (UNNC)
Team	Haonan Li (UNNC)
	<u>Yi Nie</u> (UNNC)
Short	Additive Manufacturing provides a unique opportunity to create complex
introduction of	geometries that can be customized for individuals. The recent voxelated
research project	manufacturing technology (also known as multi-material additive
	manufacturing or 4D printing) enables a new level of design and
	customization freedom, bringing new opportunities to a variety of
	applications. This project aims to develop a Digital Light Processing (DLP)
	based additive manufacturing system to achieve voxelated manufacturing
	aiming for customized medical devices. The successful Ph.D. candidate
	will develop a novel system with unique printing and cleaning strategy to
	achieve hybrid printing of polymeric/ceramic materials.
	This project will be carried out jointly with the University of Nottingham
	Centre for Additive Manufacturing (CfAM) group and the student is
	expected to work at CfAM UK during Year 3 (subject to the student's
	progress). In year 1 and 2, the student will be based at China Beacons
	Institute, University of Nottingham Ningbo China.
	We are cooking talented candidates with:
	We are seeking talented candidates with:
	 First or upper second class degree in mechanical/mechatronics or related scientific discipling
	related scientific discipline
	 Demonstrated ability to develop precision mechatronics system and algorithm
	 Background with relevant packages (MATLAB, Python, LabVIEW) A professional and solf mativated work attitude is assertial
Contrating	A professional and self-motivated work attitude is essential
Contact points	Dr. Yinfeng He yinfeng.he@nottingham.edu.cn

Ducie et title	
Project title	Multi-Material, Multi-Functional Device Design for Voxel- Based Additive
	Manufacturing
Programme	PhD PhD IAMET New Materials and New Equipment
Research area	Additive Manufacturing
Department or	Department of Mechanical, Materials and Manufacturing Engineering
School	
Supervisory	<u>Yinfeng He</u> (UNNC)
Team	<u>Yi Nie</u> (UNNC)
	<u>Ian Maskery</u> (UNUK)
Short	The real potential and value of Additive Manufacturing (AM) will come
introduction of	from the design and Implementation areas. We will explore the
research project	development of next-generation device using our developed Multi-
	material DLP printers and photoreactive formulations. The Multi-material DLP printers will be applied to control the distribution of multiple polymer materials, enable macro- and micro lattice structure, and fulfil the customized shape of the device. Reliability optimization among material distribution, structural dimensions and processing parameters is to be carried out to maintain the device's durability to resist mechanical and structural damage. The successful implementation of this project will be promising for the development of various high-end bio-products for applications such as Heart, digestive tract or orthopaedic diseases treatments.
	This project will be carried out jointly with the University of Nottingham Centre for Additive Manufacturing (CfAM) group and the student is expected to work at CfAM UK during Year 3 (Subject to the student's progress). In years 1 and 2, the student will be based at China Beacons Institute, University of Nottingham Ningbo China.
	We are seeking talented candidates with:
	First or upper second-class degree in mechanical/material,
	mathematics, physics or related scientific discipline
	 Demonstrated ability to design, manufacture and evaluation of devices
	 Background with relevant packages (CAD/CAE software)
	A professional and self-motivated work attitude is necessary
Contact points	Dr. Yi Nie
	yi-nie@nottingham.edu.cn
L	0

Project title	Innovative vibration control of electro-mechanical drive trains using active
	bearings
Drogrammo	PhD Mechanical Engineering
Programme	
Department or School	Department of Mechanical, Materials and Manufacturing Engineering
Research area	Advanced Manufacturing
Supervisory –	Assoc. Prof. Dunant Halim
Team	
Short	This project is focused on addressing important challenges in achieving
introduction of	effective vibration/noise suppression of an electromechanical drive train,
research project	consisting of a combined electric motor and a mechanical drive train, for a
	wide range of advanced manufacturing and transportation applications.
	The noise and vibration problems in electromechanical drive trains are
	commonly addressed by over-engineering that leads to relatively bulkier
	and heavier designs. Therefore, to address the vibration and noise
	problems, the project aims to develop an innovative active vibration
	control system for electromechanical drive trains, incorporating
	electromechanical actuation through active bearings to suppress
	excessive vibration of the system.
	The project will cover vibration control system design which will be
	verified through simulation and experimental investigations. The research
	investigation includes the rotordynamic modelling and analysis of
	electromechanical drive trains with active bearings; design of active
	vibration control systems; and the stability analysis, performance
	evaluation and optimization of active vibration control systems for
	electromechanical drive trains. This project is expected to provide an
	important theoretical and practical foundation for the development of
	effective active vibration control of electromechanical drive trains for
	industrial applications.
Contact noints	Assoc. Prof. Dunant Halim
Contact points	
	dunant.halim@nottingham.edu.cn

Project title	Human Computer Interaction
Programme	PhD Mechanical Engineering
Department or	Department of Mechanical, Materials and Manufacturing Engineering
School	, , , , , , , , , , , , , , , , , , , ,
Research area	Human-Computer Interaction;
	Human Factors;
	Innovative Design;
	User Experience Research.
Supervisory	Prof. Xu Sun
Team	Dr. Deng Wu
Short	The project aims to develop a suite of intelligent data-driven approaches
introduction of	in the transformation of the traditional manufacturing paradigm to smart
research project	manufacturing. It could empower today's car manufacturers to adopt
	data-driven strategies to enhance the customer experience, ensure road
	safety and ultimately stand out in the fierce competition automotive
	market.
	The specific objectives include:
	a. Construct new data-driven models that can predict/explain the
	relationships between different user, task and environment variables as
	they relate to automated vehicle design characteristics. There has been
	an emphasis on how from a technological perspective the status of the
	driver (e.g. emotions, fatigue, motion sickness system use) can be
	monitored and predicted— especially in real-time.
	b. Develop intelligent algorithms and data warehouse technologies that
	researchers and practitioners can use to profile users, prepare automated
	vehicles (AVs) for a smooth transition between roles and calibrate user
	trust for AVs.
	c. Develop a new data-driven vehicle concept that demonstrates the
	ultimate user experience by showcasing the novel adaptive Human
	Machine Interfaces (HMIs) developed within the research theme.
	There is a focus is to explore how a driver profile, specifically within an
	automated driving context and generated based upon driver status, can
	be used to inform intelligent adaptations of the HMIs.
Contact points	Prof. Xu Sun
	xu.sun@nottingham.edu.cn

Project title	Fundamental research on scalability, accuracy, robustness and
	interpretability of neural networks
Programme	PhD Electrical and Electronic Engineering
Department or	Department of Electrical and Electronic Engineering
School	
Research area	Machine learning
Supervisory	Jim Greer
Team	
Short	Neural network based learning has become the dominant paradigm in modern
introduction of	machine learning. Although the success stories of machine learningespecially
research project	deep learninghave garnered significant attention, there are fundamental
	challenges that must be addressed before neural networks may be deployed as
	reliable components in safety/mission critical systems. Some of the notable
	challenges include interpretability, robustness, and cost of training.
	To address these challenges, a systematic approach based on sound
	mathematical principles must be adopted. At the same time, such research must
	be guided by the insight obtained from practical applications of machine
	learning.
	The aim of this proposal is to study computational properties of neural networks
	at a fundamental level. We analyze salient aspects such as scalability, accuracy,
	robustness and interpretability of machine learning systems deployed in
	engineering applications. The proposal is part of a broader cross-disciplinary
	project that involves electrical engineering, chemical engineering, and material
	sciences. As such, this is an ideal opportunity for candidates who are interested
	in fundamental research which can also broaden their understanding of science
	and engineering by collaborating with researchers from a variety of disciplines.
Contact points	Prof. Jim Greer jim.greer@nottingham.edu.cn

Project title	Learning Guided Combinatorial Optimisation
Programme	PhD Computer Science & Operations Research
Department or	School of Computer Science
School	
Research area	Combinatorial Optimisation
	Computational Intelligence
	 Deep Reinforcement Learning
	 Transportation Analysis and Optimisation
	Big Data
Supervisory	Ruibin Bai
Team	Rong Qu
Short	Combinatorial optimisation problems (COP) have extensive real-life
introduction of	applications. However, most of them are NP-Hard and finding the optimal
research project	solutions is normally computationally prohibitive for large-size instances.
	The problems become even harder when uncertainties are taken into
	account to improve the practicality of the solutions.
	The existing approaches to tackle these types of problems can broadly be
	classified into analytical model driven methods (typified by mathematical
	programming methods) and data-driven methods (e.g. genetic
	programming and reinforcement learning. The former methods focus on
	the analytical properties of the mathematical model but may suffer from
	the robustness issues over uncertainties from the input data.
	The data driven methods often formulate the combinatorial problems as
	online optimisation problems and try to tackle the problem sequentially
	based on some policies or rules upon the realisation of random variables
	and the states of the partial solution at each decision point. One of the
	main drawbacks of these data driven methods is their inability to
	efficiently exploit the core structures and properties of the problem.
	More specifically, existing data driven methods primarily focus on the
	objectives to be optimised but often neglect various complex
	inter dependencies among the decision variables (in the form of
	constraints) and their collective influence on the objective.
	In this research, the students shall investigate integrating linear/integer
	programming methods with the latest deep learning methods, including
	but not limited to reinforcement learning and graph neural network
	based learning.
Contact points	Prof. Ruibin Bai Ruibin.bai@nottingham.edu.cn

Desta de l'Ula	
Project title	Tackling the pandemic of antibiotic-resistant infections: An artificial
	intelligence approach to new druggable therapeutic targets and drug
	discovery
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Bioinformatics
Supervisory	<u>Tania Dottorini</u>
Team	
Short	The use of antibiotics to control bacterial infections is perhaps the most
introduction of	important achievement of modern medicine. However, we have failed to
research project	keep pace with microbes becoming increasingly resistant to available
	treatments. Antibiotic-resistant infections are already another global
	pandemic claiming almost 5 million deaths per year globally.
	The increasing isolation of strains resistant to "last resort" antimicrobials
	has significantly narrowed, or in some settings completely removed, the
	therapeutic options. This is particularly alarming in low and middle-
	income countries. Unfortunately, new classes of drugs are not being
	invented and resistance continues to spread inexorably. A better
	understanding of the means used by microbes to resist antibiotics may
	result in the discovery of hitherto unknown targets suitable to develop
	new drugs against.
	In this research, we will use artificial intelligence, bioinformatics and
	microbiology to identify new potential druggable targets that when
	blocked may render the microbe susceptible to antibiotics. Next, and
	utilizing other learners, we will identify drugs that can block these targets.
	Our analysis will also target another important aspect linked to antibiotic-
	resistant infections that is transmission, again using a combination of
	expertise we will use our and publicly available data to study drivers and
	transmission of resistant pathogens in different anthropogenic
	environments including (communities, hospitals, livestocks, etc.,)
Contact points	Dr. Tania Dottorini <u>tania.dottorini@nottingham.ac.uk</u>
contact points	

Project title	To surface the constitute should use of multiple using the set was been done
Froject title	To explore the genetic mechanisms of multiple pain phenotypes based on
	the UK Biobank cohort
Programme	PhD Chemical Engineering
Department or	Department of Chemical and Environmental Engineering
School	
Research area	Bioinformatics
Supervisory	Weihua Meng
Team	Mainul Haque
Short	There are many site-specific pain phenotypes in the human body such as
introduction of	back pain, hip pain, knee pain, etc. These pain phenotypes could be
research project	considered as common complex traits like diabetes. However, we have
	limited knowledge about the genetic mechanisms of these pain
	phenotypes despite some studies have suggested that genetic
	components play a role in the disease mechanisms. The UK Biobank has
	collected the genetic information and pain-related information of its
	participants which make this genetic research possible.
	We aim to identify the genetic variants that contribute to multiple pain
	phenotypes through a genome-wide association study (GWAS) approach
	using the UK Biobank datasets. We will also investigate the genetic
	correlations among these pain phenotypes.
	correlations among these pain phenotypes.
	Year 1: the student will receive training in background reading and
	get familiar with GWAS software.
	Year 2: the study will perform multiple GWAS to explore potential
	genetic variants for pain phenotypes.
	Years 3: the student will submit manuscripts to journals and publish
Contrat naints	them. Meanwhile prepare his/her dissertation.
Contact points	Dr. Weihua Meng
	weihua.meng@nottingham.edu.cn

Project title	Wearable Optical Biosensor
Programme	PhD Electrical and Electronic Engineering
Department or	Department of Electrical and Electronic Engineering
School	
Research area	Life Science and Healthcare
Supervisory	Dr. Jing Wang, Dr. Richard Smith, Dr. Sen Yang
Team	
Short	For patients with severe diseases, e.g. elderly people or new-born babies, the
introduction of	real-time monitoring of multiple physiological indices during MRI scanning is
research project	essential. Due to the strong electromagnetic field in MRI Scanner room, the traditional electronic sensors for monitoring health status will be damaged. This project proposes an MRI compatible wearable sensor based on Fiber Bragg Grating (FBG) technology with the advantages of immunity to EM fields, high sensitivity, light-weight, high flexibility, high stability, low cost and small size.
	This wearable sensor is able to monitor the following parameters in real time: 1. Human physiological indices: body temperature, heart rate, blood oxygen level, breathing, volume of perspiration; 2. Environmental parameters, i.e. room temperature, humidity and audio level. Besides real-time monitoring, machine learning will be adopted in data analysis, in order to analyse the patient's emotion and to identify any dangerous circumstances, e.g. sudden apnoea, abnormal heart rate. For example, the audio signal will be separated into environmental audio and human audio, and based on the signal of human audio, breathing, heart rate, and body temperature, dangerous circumstances can be diagnosed and a warning message will be sent to the doctors immediately. The proposed system, with only minor modification to the system setup, can also be used as daily or long-term physiological monitoring within normal environment where there is a need.
	The objectives of this proposed research in Phase I are to: 1. Design and setup a sensing system for the real-time detection of human physiological indices (body temperature, heart rate, blood oxygen level, breathing, volume of perspiration) and environmental parameters (room temperature, humidity and audio level), which is mainly designed for simultaneous monitoring of patients during MRI scanning. 2. Develop the diagnosing and warning system using signal processing techniques and machine learning algorithm. 3. Investigate the relationship between physiological indices (especially PWV) with hypertension and angiocardiopathy.
Contact points	Dr. Jing Wang
• • • • •	Jing.Wang@nottingham.edu.cn

Project title	AI Enabled Drug Discovery
Programme	PhD Chemical Engineering
Department or School	Department of Chemical and Environmental Engineering
Research area	Life Science and Healthcare
Supervisory	Dr. Bencan Tang
Team	Dr. Jianfeng Ren
	Professor Jonathan Hirst
Short	The development of anticancer drugs involves drug-like molecule design
introduction of	and synthesis, lead identification and optimization, as well as later
research project	development in clinical trials, and then finally marketing. Computer aided drug development can greatly reduce the research and development (R & D) cycle and R &D costs. Within this, artificial intelligence is currently actively adopted for drug screening, design and synthesis. As a powerful data analysis and data mining tool, machine learning, as an important branch of artificial intelligence, is expected to play an important role in virtual screening.
	This project aims to set up an artificial intelligence based anti-cancer drug discovery platform with the ability to virtually screen potential anti-cancer candidates. The screening of inhibitors for high-risk tumor related targets such as BRCA, EGFR, LSD1, PARP, DNMT1 will be carried out as case studies for this platform. Meanwhile the obtained potential inhibitors for these targets will be synthesized for biological tests and further development.
	We are seeking TWO PhD students in this project. Candidate 1 is expected to carry out synthesis who should have strong experience in medicinal chemistry and organic synthesis. Candidate 2 is expected to have strong experience in applying machine learning in drug screening, who ideally should have experience in computer programing.
	You are welcomed to contact us (via email bencan.tang@nottingham.edu.cn) to discuss these opportunities further.
Contact points	Dr. Bencan Tang
	bencan.tang@nottingham.edu.cn