Research project and supervisor team

Supervisory	Dr. Kean-How Cheah
Team	
	Dr. Yong Ren
	Dr. ChungKet Thein
Short introduction &	
description of	Nanosatellites $(< 10 \text{ kg})$ have gained much attention among the space community
research project	Nanosatemites (< 10 kg) have gamed much attention among the space community
research project	as a rapid and cost-effective platform to demonstrate new technologies in outer
	space. However, most of the nanosatellites have no onboard propulsion system
	due to the limited spatial volume and electrical power. The need of propulsive
	capability for the nanosatellites to perform more complex mission has prompted
	an intensive research and development in the area of micropropulsion systems.
	Using microelectromechanical system (MEMS) technology, the existing chemical
	propulsion systems have been miniaturized significantly. Unfortunately, the high
	thermal conductivity of silicon has resulted in a low system efficiency as a result
	of onbanced best loss at micro cools. In addition, the further integration of liquid
	or enhanced near loss at micro-scale. In addition, the further integration of liquid
	chemical micropropulsion system into nanosatellite is limited by the heavy and
	bulky air pressurized fluid handling system. This project aims to address these
	issues by studying the solid sublimation at reduced pressure and subsequently
	implement it into the development of a space micropropulsion system. Additive
	manufacturing technology (3D printing) will be used to fabricate a ceramic based
	prototype with an axisymmetric conical micronozzle. Performance of the
	prototype with an axisymmetric conical micromozzie. Terrormance of the
	prototype will be evaluated through a series of experiments using an in-house
	built torsional micronewton thrust stand. Upon completion of the project, a new
	and highly compact micropropulsion system which uses green solid propellant
	will be demonstrated.
Contact points	Dr. Kean-How Cheah
	Email: Kean-bow cheah@nottingham edu cn
	Lindi. <u>Rear now.circan@nottingnam.cdu.cn</u>