Research project and supervisory team

Supervisory	Enrico Marsili
Team	Kim Hardie
. cum	Miguel Camara
Short	Project title:
introduction &	Identification of signaling and regulatory compounds involved in the
description of	early formation of polymicrobial biofilms
research project	
	Biofilms, micro-structured microbial communities that thrive at
	interfaces, are among the most complex microbiological forms of life to
	be investigated. They are the most common mode of life for
	microorganisms, in environmental and clinical settings. Biofilms are
	comprised of microorganisms encased in self-produced extracellular
	matrix, made of proteins, carbohydrates, and extracellular DNA. Biofilms
	are formed when free-swimming microorganisms, termed planktonic,
	are in close proximity of a surface or interface (e.g., liquid/solid surface).
	Through a complex set of regulation and signalling mechanisms,
	planktonic cells attach to the surface and start producing their
	extracellular matrix. Currently, the production and distribution of
	metabolites and signalling compounds in biofilms is poorly understood.
	This is particularly relevant for polymicrobial biofilms, in which different
	bacterial species interact with each other to define the overall biofilm
	properties. The switch from planktonic to attached lifestyle is crucial in
	the development of the infection and should be identified precisely to
	allow effective treatment. While planktonic cells can be easily removed,
	once the extracellular matrix starts forming, it confers high mechanical
	and chemical resistance to biofilms, including resistance to antimicrobial
	and antibiotics.
	Riefilms are responsible of 80% shrenis and 65% total infection in
	Biofilms are responsible of 80% chronic and 65% total infection in health settings. Recent research has focused on non-lethal drugs for
	biofilm control, such as biofilm dispersal agents. However, a sound
	understanding of biofilm microstructure, species composition and
	dynamics is needed to develop and test effective antibiofilm agents.
	Biofilms are open systems, so they are naturally exposed to influx and
	contamination from the surrounding environment. Consequently, most
	biofilms are mixed microbial communities, comprising bacteria, fungi and
	higher organisms. Clinical biofilms factor in also the interaction with the
	host, in which the host immune system alters the biofilm composition
	and structure and microorganisms compete with the host cells for
	nutrients and physical space. The complexity of mixed microbial
	biofilms is mostly overlooked in current research . In fact, most research
	sioning is mostly overlooked in current research. In fact, most research

have focused on single biofilm-forming strains and the molecular mechanism of biofilm formation. In polymicrobial biofilms, different species interact with each other, thus modulating biofilm mechanical and chemical properties, including microstructure and antimicrobial resistance. While modern microscopy and spectroscopy methods allow spatial resolution of complex microbial consortia at an unprecedented level of details, technologies to study the interactions between microbial species in polymicrobial biofilms at molecular level are still lacking. Detecting early formation of polymicrobial biofilms is a daunting task that requires the combination of several technologies at small spatial (i.e., 5-10 µm) and time resolution (i.e., minute to hours). As biofilm forms on surfaces, surface-based technologies like electrochemistry on microelectrode arrays [1], scanning electrochemical microscopy and Raman analysis [2, 3] are useful to detect the pattern of initial biofilm formation and the main chemical species involved in the process, through molecular recognition biosensors. Mass spectrometry methods provide a wealth of information about the biochemical interaction between different species, which can be interpreted with bioinformatic toolkits [4]. In this project, the two candidates will focus on the analysis of known signalling molecules that drive interactions between different species in the formation of early polymicrobial biofilms [5]. They will then correlate the structural and electrochemical information on biofilm with the concentration of signalling molecules at different stage of early biofilm formation (e.g., planktonic, initial attachment, appearance of microcolonies). Specific mutants lacking or overexpressing signalling compounds will be used to determine the role of these compounds in the species-species interaction and the early formation of polymicrobial biofilms. The ultimate goal of this project is to shed light on the mechanism of early polymicrobial biofilm formation. Knowing the molecular network of signaling and regulatory compounds involved in biofilm formation will allow identifying targets for novel therapeutic agents that can delay, reduce or impede altogether biofilm formation, thus improving diagnosis and treatment of polymicrobial biofilm infections. **PhD student 1** will focus on the electrochemical and Raman characterization of polymicrobial biofilms. S/he should have a background in Chemical/Biochemical Engineering or Physical Chemistry, with a strong interest in Microbiology. This part of the project will involve the collaboration of two external scientists, Xiaoming Zhang and Elia Marin (see supervising team section). They will contribute to the

	development of electroanalytical and Raman spectroscopy protocols, respectively. The supervising team will include Enrico Marsili, Sze Shin Low, Kim Hardie and Miguel Camara.
	PhD student 2 will focus on the metabolomics of polymicrobial biofilms. S/he should have a background In Chemistry or Microbiology, with a strong interest in modelling and computational methods. The candidate will develop a machine learning-based data analysis pipeline, in collaboration with Weihua Meng (UNNC) to characterise polymicrobial biofilms under laboratory conditions The supervising team will include Enrico Marsili, Weihua Meng, Kim Hardie and Miguel Camara.
Contact points	Enrico Marsili (UNNC) – <u>enrico.marsili@nottingham.edu.cn</u>
	Kim Hardie (UNUK) - <u>kim.hardie@nottingham.ac.uk</u>
	Miguel Camara (UNUK) - <u>miguel.camara@nottingham.ac.uk</u>